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Anew simulation approach for high Reynolds number turbulent flows is developed,
combining concepts of monotonicity in nonlinear conservation laws with concepts
of large-eddy simulation. The spectral vanishing viscosity (SVV), first introduced by
E. Tadmor BIAM J. Numer. Anal26, 30 (1989)], is incorporated into the Navier—
Stokes equations for controlling high-wavenumber oscillations. Unlike hyperviscos-
ity kernels, the SVV approach involves a second-order operator which can be readily
implemented in standard finite element codes. In the work presented here, discretiza-
tion is performed using hierarchical spectnalmethods accommodating effectively
anab initio intrinsic scale separation. The key result is that monotonicity is enforced
via SVV leading to stable discretizations without sacrificing the formal accuracy, i.e.,
exponential convergence, in the proposed discretization. Several examples are pre-
sented to demonstrate the effectiveness of the new approach including a comparison
with eddy-viscosity spectral LES of turbulent channel flow. In its current implemen-
tation the SVV approach for controlling the small scales is decoupled from the large
scales, but a procedure is proposed that will provide coupling similar to the classical
LES formulation. @ 2000 Academic Press

1. INTRODUCTION

Thirty years after intense research on large-eddy simulations (LES) of turbulent flo
based on the eddy-viscosity subfilter models [1], there is now consensus that suct
approach is subject to fundamental limitations. It has been demonstrated for a numbe
different flows that the shear stress and strain tensors involved in subfilter eddy-visco
models have different topological features [2-5]. In particular, it was reported in [4] that t
dynamics of the local energy flux, even in the inertial range, is poorly correlated with t
locally averaged energy dissipation rate, an assumption employed in most eddy-viscc
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models [6]. To this endjlternativeL ES formulations have been investigated based on eithe
the filtered or the original Navier—Stokes equations.

A filtered non-eddy-viscosity approach is the scale-similarity model, first proposed
Bardina [7], and its subsequent variants (e.g., [8]). It assumes that the subfilter stres
proportional to the so-called Leonard stresses, which are expressed in terms of the
tered velocity gradients. Preliminary results with mixed models that include a dissipat
component for numerical stability (e.g., see [9]) have shown significant improvement o
eddy-viscosity models. However, such mixed models are typically computationally mc
expensive and their implementatiordomplex-geometry flovisnot straightforward. Inde-
pendent of this approach, there has been also an effort to abandon the classical formul
and employ instead the original (unfiltered) Navier—Stokes equations. In this case, one ¢
useab initio scale separation (see, for example, [10] and [11]) with an additional assun
tion for stabilization, or invokenonotonicityvia nonlinear limiters that implicitly act as a
filtering mechanism for the small scales [12—-15]. Regarding the latter, the original idea:
von Neumann and Richtmyer on artificial dissipation motivated Smagorinsky in develop
his model (C. Leith, private communications).

Turbulence simulations usingionotonicity-preservingchemes have concentrated on
homogeneous turbulence, employing both PPM- and FCT-type algorithms [12, 14], as \
as on wall-bounded flows using FCT-based limiting [16]. Unlike other strictly monoton
discretizations of nonlinear conservation laws, which are total-variation-diminishing (TVI
and thus first-order accurate (see theorem of LeVeque and Goodman [17]), the PPM
FCT algorithms employ nonlinear limiters and guarantee monotonicity locally while pr
serving at least second-order accuracy in both phase and amplitude [18, 19]. These sch
honor the weaker total-variation-bounded (TVB) condition which allows for small ampl
tude oscillations. The intriguing feature of the monotonically integrated LES (or MILES
approach [14] is the activation of the limiter on the convective fluxes and its role in genet
ing implicitly a tensorial form of eddy viscosity that acts to stabilize the flow and suppre
oscillations. It was reported in [14] that if the resolution is fine enough to ensure that the
off wavenumber lies in the inertial range, then the simulation results seem to be indepen
of the generated viscosity.

In the aforementioned PPM and FCT algorithms for convection, use of nonlinear i
iters or reconstruction procedures is in some form equivalent to adding diffusion
the hyperbolic conservation laws so that entropy dissipation is created and a unique
lution is obtained (see Lax [20]). If the discretization lacks entropy dissipation, the
Gibbs oscillations are produced and eventually render the solution unstable. In convect
dominated high Reynolds number flows the situation is analogous. However, this me
anism is implicit and although the induced artificial diffusion may scale with the loc:
resolution asx (Ax)S, s > 1, it is an uncontrollable process that may compromise th
solution accuracy. This conflict between monotonicity and accuracy, first analyzed
Godunov [21], was more recently revisited by Tadmor [22], who has developditghe
theoretical resulton the convergence and stability of spectral approximations for nol
linear conservation laws [22]. Specifically, Tadmor introduced artificial dissipation v
the spectral vanishing viscosity (SVV), which is sufficiently large to suppress oscill
tions, yet small enough not to affect the solution accuracy. In the context of spec
discretizations, for example, SVV can be viewed as a compromise between the cle
cal TVB viscosity approximation and the exponentially accurate yet unstable spectral
proximation.
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The spectral vanishing viscosity approach guarantees an essentially nonoscillatory be
ior although some small oscillations bbunded amplitudenay be present in the solution.
This theory is based on three key components:

1. avanishing viscosity amplitude which decreases with the mode number;
2. aviscosity-free spectrum for the lower, most energetic modes; and
3. an appropriate viscosity kernel for the high wavenumbers.

If hierarchical discretizations are employed, the combined formulation inherents the afc
mentioned scale separation attempted by other authors, e.g., in the multiscale variati
method of Hughes [11] or in the nonlinear Galerkin method of Temam [10]. On the oth
hand, monotonicity of the TVB kind is preserved, but the high-frequency regularizati
employed is controlled by parameters whose range is given directly by the theory. This't
ory has been extended to spectral collocation discretizations in [23] and to supervisco
formulations, first by Tadmor [24] and more recently by Ma [25, 26], in order to extend t
range of theviscosity-freespectrum.

All applications of the SVV method so far deal with one-dimensional conservation lav
apart from the work of Andreasse al. [27], who have used SVV for two-dimensional
simulations of waves in a stratified atmosphere; see also [28] for two-dimensional exam|
for the Euler equations. Standard Fourier or Legendre discretizations were employec
Tadmor and his colleagues while Chebyshev discretization was employed by Andrea:
et al In the current work, the SVV concept is used in the context of simulating incompres
ible turbulent flows using multidomain spectral methods, based on the sggzGallerkin
approach (see Appendix | and [29]). The equations used are the unfiltered Navier—Stc
equations which are enhanced on the right-hand side with a spectral vanishing visc
operator. For underresolved or marginally resolved simulations, rapid-solution variatic
appear as discontinuity as sketched in Fig. 1 and this can be described locally by an ir
cid Burgers-type equation. For standard Fourier methods and simulations of homogent
turbulence, SVV can be thought of as using hyperviscous dissipation that will affect o
the high Fourier modes. This approach has been used successfully, for example, by B
and Orszag [4] in achieving high Reynolds number simulations. The proposed method
tends such capability to complex-geometry discretizations using a standard finite elen
framework. To this end, superviscous operators are not used, as they cannot be handl
the standard Galerkin framework that requi@scontinuity for the trial basis. We note,
however, that discontinuous Galerkin methods can handle high-order SVV operators,
at higher computational complexity.

It is worth pointing out an important distinction between the classical LES formulc
tion and the currently proposed SVV formulation. In particular, unlike standard larg
eddy formulations where the small-scale dynamics is coupled to the dynamics of the Iz
scales with explicit contributions from the subgrid scales, in the current implementation
SVV approach ignores this coupling. This rather strong assumption is also typical of ot
monotonicity-based LES approaches; however, in the SVV approach a coupling simila
eddy viscosity subgrid models can be implemented, and it will be discussed in Section

In the current paper, the SVV method is first extended to spectral discretizations us
general Jacobi polynomials, in single and multiple domains, with solutions of the Burge
equations compared to previously published results; the emphasis is on the perform:
of SVV using multidomains. An SVV-based formulation is then developed for the twc
dimensional Navier—Stokes equation concentrating on preserving spectral accuracy.
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FIG. 1. Although a well-resolved velocity field may be smooth, when it is underresolved, the discretizati
may interpret a variation as a discontinuity. In these cases, SVV may be introduced in order to damp the oscilla
and reproduce a smooth velocity field.

Kovasznay flow [29] is simulated to investigate the effect of the SVV method on the soluti
accuracy. Finally, the new method is applied to simulations of the standard three-dimensi
turbulent channel flows at Reynolds numbers 180 and 395 (based on wall shear veloc
We conclude with a brief discussion on possible extensions of the proposed methodol
including a strategy for coupling the SVV approach to the dynamics of large scales.

2. THE SPECTRAL VANISHING VISCOSITY METHOD

Tadmor [22] first introduced the concept of SVV using the inviscid Burgers equation

B d [U(x,1)
E)tu(x’t)+8x< 5 ) =0, Q)
subject to given initial and boundary conditions. The distinct feature of solutions to tt
problem is that spontaneous jump discontinuities (shock waves) may be developed,
hencea classof weak solutions can be admitted. Within this class, there are many pos
ble solutions, and in order to single out the physically relevant one an additional entre
condition is applied, of the form

9 /Uud(x,1) 9 [ud(x,t)
at( . )+a( . )so. @)

In practical applications, spectral methods are often augmented with smoothing prc
dures in order to reduce the Gibbs oscillations [30] associated with discontinuities aris
at the domain boundaries or due to underresolution. However, with nonlinear proble
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convergence of the Fourier method, for example, may fail despite additional smooth
of the solution. Tadmor [22] introduced the SVV method, which adds a small amount
controlled dissipation that satisfies the entropy condition, yet retains spectral accurac
is based on viscosity solutions of nonlinear Hamilton—Jacobi equations, which have b
studied systematically in [31]. Specifically, the viscosity solution for the Burgers equatit

has the form
9 u2(x, t) 9 au
EU(X,U‘F &( > ) &[Qe&} 3

wheree (— 0) is a viscosity amplitude anQ. is a viscosity kernel, which may be nonlinear
and, in general, a function of. Convergence may then be established by compactne
estimates combined with entropy dissipation arguments [22]. To respect spectral accur
the SVV method makes use of viscous regularization and Eq. (3) may be rewritten in disc
form (retainingN modes) as

d u?(x, t) 9 GIVIN
ﬁUN(X t)+ |:7DN< > )} =€&{QN*W] 4)

where the sta(x) denotes convolution arfBy is a projection operatoQy is a (possibly
nonlinear) viscosity kernel, which is only activated for high wave numbers. In Fourier spa
this kind of spectral viscosity can be efficiently implemented as multiplication of the Fouri
coefficients ofuy with the Fourier coefficients of the kern@ly, i.e.,
duN 2AQ 0 ikx
e[QN ]= —e Y KQudube,
M<|k|<N
wherek is the wavenumbel the number of Fourier modes, aMithe wavenumber above
which the SVV is activated.
Originally, Tadmor [22] used

A 0, k| <M

Qu= {1, k| > M, ®)
with eM ~ 0.25 based on the consideration of minimizing the total variation of the nt
merical solution. In subsequent work, however, a smooth kernel was used, since it
found that theC> smoothness oQk improves the resolution of the SVV method. For
Legendre pseudo-spectral methods, Maeagl. [32] usede ~ N1, activated for modes
k> M ~ 5N, with

(k=N)2

Ov=e&n?, k> M. (6)

In order to see the difference between the convolution operator on the right-hand sid
Eq. (4) and the usual viscosity regularization, following Tadmor [33], we expand as

8UN 32UN 0 Un
x| ) =~ Putc 08 | "
where
N ~
_ 3 ikx. oo [1-Qk®)  kKI=M
Rui, )= Y R R = {1 Kl < M. ®)

k=—N
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The extra term appearing in addition to the first standard viscosity term makes this met
different. It measures the distance between the spectral (vanishing) viscosity and the star
viscosity. This term is bounded in the norm similarly to the spectral projection error. In
this paper we refer to the viscosity as vanishing, as the theory requires that

1
TN logN’ =1
and thus — 0 for high wavenumbers. In more recent work, Tadmor and his collaboratc
[23] refer to it as simplyspectral viscositybut this terminology may be confused with the
one used by Lesieur and his group [34].
At this point it is also instructive to compare the spectral vanishing viscosity to tt
aforementioned spectral eddy viscosity introduced by Kraichnan [35] and Chollet—Lesi
[34, 36]. The latter has the nondimensional form [36]

v(k/N) = Ky ¥/?[0.441+ 15.2 exp(—3.03N/k)], Ko =21 9)

Comparing the Fourier analog of this eddy viscosity employed in LES [34] to the viscos
kernel Qx(k, M, N) introduced in the SVV method, Fig. 2 shows both viscosity kernel
normalized by their maximum valuelat= N. For SVV, two different values of the cut-off
wavenumber are considered,

M=C+vN forC=0andC =5. (10)

1 T T T T

—  M==5SQRT(N)| °
M=
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FIG. 2. Normalized viscosity kernels for the spectral vanishing viscosity (dashelired and solid line
C = 5) and the Kraichnan/Chollet-Lesieur viscosity (dash-dot line).
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This range has been used in most of the humerical experiments so far (see, for exan
[27, 32]) and is consistent with the theoretical results [22]. In the plot it is shown that,
general, the two forms of viscosity have similar distributions, but the SVV form does n
affect the first one-third or one-half of the spectrum (viscosity-free portion) and it increas
faster than the Kraichnan/Chollet-Lesieur eddy viscosity in the higher wavenumber rar
e.g., in the second-half of the spectrum.

3. EXPERIMENTS WITH 1-D BURGERS’ EQUATION

One-dimensional results are first presented, applying the SVV method to inviscid Burge
equation in order to assess the range of the parameters involved in the viscosity kernel.
more general multidomain discretization is reviewed in Appendix |, i.e., the spégtral/
element method. A multidomain implementation for nonlinear hyperbolic problems h
also been reported in [37].

The Fourier method as well as the spectrplélement method with SVV is applied to
the periodic inviscid Burgers equation, using

u(x,t = 0) = sin(zx)

as initial conditions. The domain considered extends frdin< x < 1, and a smooth kernel
Qn is used.

3.1. SVV—Fourier Spectral Method: Results

The SVV method is first briefly presented with the Fourier method, as proposed by Ct
et al.[24a]. Heree ~ N~ andM ~ 2N¥/2 are used, with the Burgers equation integratec
up to timet = 1.0. Figure 3 shows the effect of the SVV method on the 1-D Burgers s
lution, for different values o€, with aC> kernel Q. It is clear that with the introduction
of SVV, the solution converges strongly irP for p < oo (but not uniformly) to the exact
entropy solution, in sharp contrast to the oscillatory behavior of the viscosity-free Four
method. A third-order Adams—Bashforth time-stepping scheme is used, with a time s
At = 0.001. It should be noted that with= 0 the solution diverges. This is somewhat
obvious from the plot, which shows that as the viscosity amplitude decréatms the
theoretical limit the amplitude of the oscillations increases significantly. It is also note
that the aforementionezpectral convergends not obvious in this stable, but still wiggly
solution. To recover spectral convergence, further postprocessing is required to eliminate
still visible Gibbs phenomenon. This, for example, can be obtained by reconstruction as ¢
umented in [38], in conjunction with an edge detection technique; this has been success
demonstrated by Gelb and Tadmor [39]. No postprocessing or other type of reconstruc
is necessary at each time step, but only at the final time step, allowing this method tc
particularly efficient.

3.2. SVV-Jacobi Spectral Method: Results

Next, the global spectral method (single domain) is employed URiag64 hierarchical
Jacobi modes as the basis (see Appendix 1), and repeat the previous experiment. In F

2We thank the anonymous referee for suggesting this unpublished work.
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FIG.3. Solution of 1-D Burgers’ equation with = 64 Fourier modes and = 16 = 2¢/N: solid line—very
high resolution (512 modes); circles—= 1/N; squares—e = 1/2N; crosses—e = 1/5N.

results from these simulations are shown with different valuesaoidM used; the Fourier
method forlN = 64 is also included for reference. Itis clear that ascreases, the amplitude
of oscillations decreases. By increasing the cut-off wavenumibiiie amplitude increases,
although the amplitude is more sensitive to changesrather tharivi.

3.3. SVV-Jacobi Spectral/hp Element Method: Results

Multidomain discretization (see Appendix I) is next investigated with the same test c:
performed withK = 2 andK = 3 elements (Fig. 5). For the 2-element cBse 32 is used,
while the 3-element case usBs= 21. Overall, similar behavior to that with the 1-element
case is noted. For 3 elements (Fig. 5, right), there is improvement similar to that with-
use of the SVV method. Comparing the results of Figs. 4 and 5 reveals that as the numb
elements increases the discretization is more stable even without the incorporation of S

3.4. Conclusion

The numerical experiments with the 1-D Burgers equation indicate stability consist
with the theory and the suggested range of parameters. The scaling with respaictitd
is consistent with the theoretical prediction. In the multidomain discretization many mc
experiments are required to rigorously define trends that cannot be predicted by the the
However, it is evident from these experiments that comparable accuracy may be obta
using parameterizations similar to those used for the Fourier method.
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FIG.4. One-elementdiscretization. Top:= 64; M = 16 = 2/P. Solid thick line: Fourier discretization—
€ = 1/P; solid thin line: Jacobi discretizatione= 1/P; dashed line: Jacobi discretizatior—= 1/2P; doted
line: Jacobi discretization«= 2/P. Bottom: P = 64; M = 26. Same legend as the plot on the tdp.i$ the
number of Jacobi modes.)

4. CONVERGENCE FOR 2-D NAVIER-STOKES EQUATIONS

The main discretization steps of the incompressible Navier—Stokes equations are s
marized in Appendix Il. The main point is that the SVV operator can be treated sin
larly to the variable viscosity operator in traditional LES [40]. It is noted that the res
lution per element (spectral ord&) may vary and so do the SVV parameters. The 2-C
spatial discretization is similar to the 1-D case (see Appendix I) since a tensor prod
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FIG.5. Top: Two-element discretizatioR = 32; M = 11 = 2/P. Solid thick line: Fourier discretization—
€ = 1/P; solid thin line: Jacobi discretizatione—= 1/P; dashed line: Jacobi discretizatior—= 1/2P; doted
line: Jacobi discretizatione= 2/P. Dash-Dot line: Jacobi discretization= 0. Bottom: Three-element dis-
cretizationP = 21; M = 9 = 2¢/P. Same legend as the plot on the top.i6 the number of Jacobi modes per
element.)

rule is employed to obtain the 2-D trial basis including triangular domains (see [2
for details). Similarly, the one-dimensional formulation of the SVV method may be e
tended to two dimensions for quadrilateral and triangular elements by redefining the ke

Qpas

7( (Px=PO(Px=Px) | (Py—Py)(py—Py) )
e \(x=M)(Px=Mx) = (py—My)(py—My) , MX < px < PX’ My < py < Py (11)

Qp=
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FIG. 6. Streamline pattern (left) and quadrilateral and triangular mesh (center and right, respectively) for
Kovasznay flow. Streamwise velocity contours are superimposed on the streamlines pattern.

In order to numerically validate the 2-D methodology, the 1-D Burgers equation w
applied to a 2-D domain, with an initial conditiargx, y, t = 0) = sin(z X) + sin(zry), in a
—1<x<1,-1<y<1domain. For an isotropic mesh, the two directions are identica
and results identical to the 1-D results were obtained.

In order to evaluate the effect of SVV on the quality of Navier—Stokes solutions, the ex
Kovasznay solution is employed for laminar flow behind a two-dimensional grid (see |[Z
Chap. 9]). The solution is a function of the Reynolds number, Re, and is of the form

1
u=1-¢e*cog2ry), v = Z—e’\x sin2ry),
JT

wherex = R€?/2 — (R€?/4 + 47%)°%5. All boundary conditions are Dirichlet conditions,
defined by the above exact solution.

Two domains are employed, one consisting of 8 quadrilateral elements and one consis
of 2 triangular elements shown in Fig. 6. The computed steady-state streamline pattel
plotted in Fig. 6 (left) at Re= 40. A parametric study oanandM is conducted, with em-
phasis placed on the effect of the SVV method on the accuracy. The results are summal
in Table I. UsingK = 1,4 andK = 8 elements, it is clear that the SVV method either
improves or retains the accuracy of the solution. It is important to note that the addition
SVV to the Navier-Stokes equations does not affect adversely the convergence rate.
to the smooth character of the Kovasznay flow, spectral accuracy may be achieved
quickly. This is documented in the convergence plot shown in Fig. 7. In order to contr:
the results with the traditional artificial dissipation method, the solution is also comput
by keeping only the first term in Eq. (7). We see that the error decays extremely slov
in this case. Thereforehe remaining term in the convolution in Eq. (7) is important in
guaranteeing spectral convergence as argued by the theory [22]

This test case is important, as it indicates the minimal effect of the SVV method in smo
well-resolved regions if the theoretically predicted parameters are used. Furthermore, at
resolutions, enhanced accuracy is achieved.

5. SVV SIMULATIONS OF TURBULENT CHANNEL FLOWS

The extension of the SVV method to three dimensions is straightforward using ten:
products. The effectiveness of the SVV spectral method is evaluated in the contex
turbulent channel flow. To this end, a Fourier discretization is used along the flow direct
and spectralfp quadrilateral elements in the cross-flow and wall-normal directions.
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TABLE |
Kovasznay Flow

P Elements € M L. error L, error H; error
10 1 (Quads) 0.0 0 0.2182 0.089 0.855
10 1 (Quads) P 5 0.217 0.088 0.85
16 1 (Quads) 0.0 0 0.001164 0.00039 0.0069
16 1 (Quads) P 8 0.00113 0.00038 0.0068
18 1 (Quads) 0.0 0 0.00018 4.99E-5 0.000967
18 1 (Quads) P 9 0.000176 4.98E-5 0.000946
7 4 (Quads) 0.0 0 0.00319 0.014 0.0179
7 4 (Quads) P 4 0.00319 0.014 0.0179
11 4 (Quads) 0.0 0 5.1172E-5 1.93E-5 0.00018
11 4 (Quads) AP 7 5.1172E-5 1.93E-5 0.00018
7 8 (Quads) 0.0 0 0.000245 8.57E-5 0.00226
7 8 (Quads) 1P 3 0.000245 8.57E-5 0.00226
10 1 (Triangles) 0.0 0 0.2062 0.0906 0.817
10 1 (Triangles) P 5 0.2058 0.0904 0.8149
16 1 (Triangles) 0.0 0 0.008 0.00105 0.0224
16 1 (Triangles) 1P 8 0.0079 0.00105 0.0223
18 1 (Triangles) 0.0 0 0.001749 0.000179 0.0045
18 1 (Triangles) P 9 0.001746 0.000179 0.0045

Note. This smooth solution demonstrates that the addition of spectral vanishing viscosity does not aff
adversely the exponential convergence of the spectral eldmpetistcretization.

5.1. Results at Re=180

Channel flow at Re= 180 is simulated, with periodic boundary conditions in the strean
wise and spanwise directions following the benchmark solutions oféimh [41]. Figure 8
shows the computational domain used, with= 5, Ly = 2, andL, = 2. Two different
meshes are used; the first one (Table Il) Kas- 4 elements in the cross-flow plane, with
uniform P = 21 in all elements. In the streamwise direction 16 Fourier modes are e
ployed. This translates taverageresolution of Ax™ = 56, Az" = 26, Ay" = 26. The
second mesh (Table IlI) has = 25 elements in the cross-flow plane, with polynomial

TABLE I
Test Cases for Channel Flow at Re = 180

Case Elements € M P
1 4 0.0 0 21
2 4 1/21 15 21
3 25 0.0 0 21
4 25 121 15 21
5 4 1/21 10 21
6 4 1/21 18 21
7 4 1/42 15 21
8 4 2/21 15 21




34 KARAMANOS AND KARNIADAKIS

10 1 12 13 14 15 16 17 18

FIG. 7. Spectral (exponential) convergence is demonstrated for the exact Kovasznay Navier—Stokes solt
using the SVV method. Plotted with solid line is the maximum pointwise error versus the spectral order (Jac
polynomial degree). The dashed line shows the error if the standard artificial dissipation method is follov
corresponding to the first term of the right-hand side in Eq. (7).

Ly

Lz

FIG. 8. Computational domain for channel flow at Re 180.
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FIG. 9. Cross-flow plane for channel flow at Re- 180: Left, mesh 1; right, mesh 2.

order P = 21. This translates taverageresolution ofAzt = 11, Ayt = 11. The same
resolution is used in the streamwise direction as for mesh 1 (Fig. 9).

In the benchmark DNS of Kinet al. [41], the grid resolution was very fine, with a
192 x 129 x 160 grid on a domain of# x 2 x 2, resulting inAXx™ = 12 Azt =7 and
a maximum wall-normal spacing @y, = 4.4. It was shown that most of the energetic
scales were resolved even though the resolved scales were larger than the Kolmog
scale of 2 wall units. As far as other work is concerned, the finest mesh used in [
was Axt =35 Az" = 18 Ayt > 0.5, while in [43] it was AxT =17, Azt = 5.8,

2.1 < Ay' < 10.8. Both simulations were using eddy-viscosity models, and the resu
were close to those of the available DNS.

The initial field used in the current work has been interpolated from simulations of earl
eddy-viscosity spectral LES [40]. A three-dimensional mesh (see Fig. 10) was used ¢
sisting of K = 200 prismatic elements with triangular base in the cross-flow plane, at sp
tral orderP = 5, for a computational domain df, = 13,L, = 2, L, = 6. The resulting
averageresolution isAx* = 108 Az" = 45 and 283 < Ayt < 25. A Smagorinsky con-
stant ofc; = 0.032, with a Panton wall damping function [44], was applied. Some details
this LES approach with a modified subfilter model to account fosttiellresolution dis-
cretization (in each element) are presented in Appendix Ill. In the spectral elameB
subcell resolution is possible by increasing the polynomial order, and thus an appropt
equivalent length scale needs to be defined as shown in Appendix Il1.

5.1.1. Baseline simulationsFirst, two simulations are performed for each mesh, on
without SVV, and one witk = 1/P andM = 15; i.e.,M ~ 3/P. The interpolated fields
were integrated in time for 50 convective time units. Statistics were gathered for the |
convective 20 time units. With regard to the mean streamwise velocity profiles, the diff
ences are rather small and agree with the results of [41]. Here a comparison of turbule
intensities is presented. In Figs. 11 and 12 all components of turbulence intensities

== ==

FIG. 10. Left: Mesh for Smagorinsky spectral LES. Right: Detail of near-wall mesh.
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FIG.11. Low-resolution, mesh 1: Turbulence intensities. Doted line—no SVV; solid line—SVV/Filter; dash
dot—SVV; dashed line—spectral LES; circles—Kreplin and Eckelmann [45] atRE94.
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FIG.12. High-resolution, mesh 2: Turbulence intensities. Doted line—no SVV; solid line—SVV/filter; dashe
line—spectral LES; circles—Kreplin and Eckelmann [45] at Re194.
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compared against the experimental results of Kreplin and Eckelmann [45] and agains!
spectral LES of [40]. For cases 1 and 2 of Table Il (Fig. 11), the turbulence intensit
increase substantially in the streamwise and spanwise directions by introducing SVV, w
in the wall-normal direction the effect is less. The general trend noted is an increase of
turbulence intensities toward the experimental data of Kreplin and Eckelmann [45], wh
were obtained at Re= 194. A similar trend is also noted for mesh 2 (Fig. 12), where ir
this case the SVV simulation results better match the experimental data.

Also in Fig. 11 simulation results with the SVV approach implemented in all thre
directions are compared against the case where the SVV approach is used in the sp
element planes (cross-flow only) with slight Gaussian filtering applied to the upper ol
third of the Fourier modes in the streamwise direction. This is indicated with the dash-
versus the solid line in the plot, respectively. We see that there are some differences
the differences with the simulations without the SVV (dot line) are much greater. For t
finer resolution case (Fig. 12) the spectral element planes and there is slight filtering in
streamwise direction. In this latter case the SVV results are clearly superior to the spe
LES results of [40].

In Fig. 13, the SVV results for meshes 1 and 2 are plotted against the benchmark C
results of Kimet al. [41]. The experimental data and the spectral LES results of [40] are al
included, with the high-resolution SVV simulation being in good agreement with the DN

5.1.2. Effects of SVV parameterszour additional simulations for the low-resolution
(i.e., 4 elements; see cases 5-8 in Table Il), were also performed corresponding to varia

1 1 1 L L L 1

0 10 20 30 40 50 60 70 80

FIG. 13. Comparisons with DNS and experiments: Turbulence intensities. Doted line—low-resoluti
(mesh 1) SVV; solid line—high-resolution (mesh 2) SVV, dashed line—spectral LES; circles—Kreplin a
Eckelmann [45] at Re= 194; Triangles—Kinet al. [41].
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FIG. 14. Effect of wavenumber cut-off (low resolution): Turbulence intensities. Solid live= 15; dashed
line—M = 18; doted line—M = 10; circles—Kreplin and Eckelmann [45] at Re 194.

of the wavenumber cut-off1 and the amplitude of the SVV viscosity In Fig. 14 we plot
the results for cases 5 and 6 in Table Il correspondiniyite- 10 (dot line) andvl = 18
(dash line) and compare against the standard case 2 (solid line). The trends with respe
this parameter are mixed: The streamwise turbulence fluctuations increase with lowe
cut-off and decrease for higher cut-off values and so do the spanwise turbulence fluctuati
However, this monotonic trend does not hold for the wall-normal turbulence fluctuations.
Fig. 15 we plot cases 7 and 8 of Table Il correspondingto1/42 (dot line) and = 2/21
(dash line), respectively. Again the trends are mixed for the three different components,
at least for the streamwise turbulence fluctuations the trends are consistent with the vari
of the wavenumber cut-off. In particular, as the effect of SVV is enhanced, the streamw
turbulence intensity is closer to the experimental results. Clearly, we cannot draw gen
conclusions from these low-resolution simulations and more extensive studies concentre
on the effects of SVV parameters would provide empirical rules for the selection of optimt
values ofM ande.

5.1.3. Computational cost.With regard to computational complexity and associatec
cost, the SVV simulations involve an extra matrix-vector multiply which corresponds
an overhead of about 1% compared to the cost of simulations without SVV. In contrast
spectral eddy-viscosity LES the overhead cost is approximately 25% [40].

5.2. Results at Re=395

A simulation at higher Re= 395 is also performed and compared to DNS of Mose!
et al.[2] at the same Reynolds humbers. A computational domairéf2 3 x 2 is used in



SPECTRAL VANISHING VISCOSITY METHOD 39

3 T T T T T T T
DOO
-~~~ 0
2.5 .
oL
)
E1.5

i aaaasssd
e R Bk AP RN e
— -

FIG. 15. Effect of SVV amplitude (low-resolution): Turbulence intensities. Solid lire=1/21; dashed
line—e = 2/21; doted line—e = 1/42; circles—Kreplin and Eckelmann [45] at Re: 194.

the streamwise, spanwise, and wall-normal directions, respectively, using the mesh sh
in Fig. 16. A polynomial order oP = 21 is used, with 64 Fourier modes in the streamwise
direction. The resultingverageresolution isAx™ = 10, Az" = 6.5, andAy* = 11.6 at
the centerline.

X

FIG. 16. Cross-flow plane for channel flow at Re- 395. The spectral order B = 21.
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FIG.17. Re = 395simulations and comparisons with DNS: Turbulence intensities. Solid line—SVV; dashe
line—spectral LES; points—Moset al.[2].

Two simulations are presented, one with SVV and the other one following the classi
LES approach; all discretization parameters are the same in the two simulations. A velo
field from a previous channel flow simulation at lower Reynolds humber was interpolat
to the new mesh. At this Reynolds number and for the resolution used, simulations with
any SVV treatment were not possible; SVV was employed, with 1/P andM = 15.

It was compared to LES using the Smagorinsky model witk= 0.032, and the Panton
wall-damping function in the near-wall region. Figure 17 shows turbulence intensities of 1
two simulations, compared with the DNS of Mostral. Excellent agreement is achieved
between the SVV simulation and DNS; however, the LES is overdissipative in the near-w
region, while closer to the center line all the simulations converge.

6. SUMMARY AND DISCUSSION

The method presented here may be viewed atemative LESapproach, in the sense
of directly computing the large energetic scales while controlling the smaller scales
a spectral vanishing viscous (SVV) operator. The new second-order convolution oper:
introduced in the Navier—Stokes equations is parameterized by an amplénde spectral
kernelQ. The latter selects which portion of the spectrum will be viscosity-free and whic
portion will be in the dissipative subrange. Both parameters depend on the local resolut
i.e., the number of modes. Their range is given by a theory for nonlinear conservation la
first developed by Tadmor [22] and used mostly in solutions of 1-D and 2-D hyperbo
problems [28].
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The new method can also be viewed as a hybrid approach between monotonic
preserving schemes (like the PPM and FCT algorithms) and nonlinear Galerkin meth
where the large and small scales are separated explicitly. Both of these schemes have
proposed as alternative LES for turbulence, and preliminary results have been encoursa
[14, 16]. The important difference in the stability of the proposed SVV spelaraiethod
is that it is based on theoretical framework, even for the nonlinear case. Therefore, des
the extra SVV term in the Navier—Stokes equations, spectral convergence is preserve
shown in this paper (Section 4) in accordance with the theory.

Compared to traditional eddy-viscosity LES, the new method does not employ filter
equations, and this eliminates inaccuracies due to commutation errors associated with
uniform grids. In addition, its computational complexity is insignificant compared to tt
eddy-viscosity or mixed-model LES. With respect to accuracy, the current results indic
that the SVV simulation results are better than the LES for channel flow, using in bc
cases spectraip discretizations. However, many more numerical experiments are requir
to assess the accuracy of SVV simulations in turbulence. One of the problems with
SVV approach is that the viscosity kernel does not use information from the resolved sc
directly. While this is true in the current implementation, in adaptive p-refinemer® the
modes per element will be changing dynamically to resolve the local flow physics. Therefc
in this case and depending on the implementation details, e.g., adaptive strategy, the .
approach will incorporate physics for updating the spectral vanishing viscosity similar
those of the eddy-viscosity models in traditional LES. Such results will be reported in t
future.

Another approach that will couple the SVV procedure to the dynamics of the flow c
be formulated by considering the viscosity amplitude,

C(x;t)
€ = R
P
to be a function of position and time through the variaBle; t). This variable can be
selectedadaptivelyby relating it to the dynamics of the flow, i.e., the strain field. More
specifically, the following equation is proposed for Navier—Stokes,

Cix.t) = Ve(): 9] ’

wherev is the physical viscosity and. is the eddy viscosity obtained, for example, by
the Smagorinsky formula enhanced with the Panton modification for correct wall behav
Clearly, at regions of low strain rates the effect of SVV is minimized and becomes ze
right at the wall. In regions with high strain raté,may achieve values larger than 1, which
is consistent with the classical LES premise. The appropriate calibration of such a mc
should be tested via systematic simulations of various flows, but here we have revis
the inviscid Burgers equation presented in Section 3. The analog of the aforementic
idea is to scale the amplitude viscosity proportional to the magnitude of first derivati
Uy, i.e.,

[ux] 1

—, 12
lux|oe N (12)

€p X

normalized with its maximum pointwise norm. Several such tests have been perforr
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FIG. 18. Solution of inviscid Burgers equation using the proposed coupling procedure: Soliddine—
10|uy|/|Ux|s; dashed line-€ = 10.

and a typical result is shown in Fig. 18 for discretization wh= 64 modes. For this
resolution, the Fourier method is unstable without any SVV treatment. Here we obt
solutions corresponding to constabt= 10 (dash line) and t&€ based on Eg. (12) and
multiplied by 10. From this preliminary numerical result it can be seen that a better soluti
is clearly obtained with the proposed adaptive procedure around the discontinuity, whel
the smooth region is not affected. This solution is also improved compared to the solut
corresponding t&€ = 1 shown in Fig. 3.

There are other open gquestions with the current SVV implementation that require re
lution in the near future, which we list in the following:

e What is the relation between the SVV kernel and the hyperviscous kernel, and hov
the quality of solutions affected in simulations of homogeneous turbulence?

e From the numerical point of view, can the SVV approach be extended to collocati
methods and finite-difference methods, and what is the associated cost of computing
convolution operator?

e Can the SVV method be extended to compressible turbulence simulations, thus e
inating the often-used Favre approximate averaging procedure?

e Are the parameters and M employed in the numerical experiments in the curren
paper optimal, and what is their dependence on grid distortion and flow geometry?

Clearly, we do not have a definitive answer to these issues, and some of these ques
are more difficult to answer than others as the preliminary simulation results of section 5.
suggest. The one-dimensional version has already been extended to collocation met
[32], and the fact that the SVV is a second-order operator allows a straightforward imp
mentation in finite element codes unlike hyperviscous kernels. On the other hand, at pre
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it is not clear how to develop rigorously the SVV method for finite difference methoc
avoiding the current empiricism, although some progress on this front has been mad
employing similar ideas [47]. With regard to the parameter range, it is clear that stud
more systematic than the ones presented in Section 5.1.2 are needed to answer questi
optimality and dependence on the flow geometry.

APPENDIX |

The Spectralhp Method

The main discretization concepts of the spedifahhethod are reviewed in the context
of the 1-D inviscid Burgers equation enhanced with the SVV second-order operator. -
objective is to introduce the hierarchical trial basis of the method which is derived frc
Jacobi polynomials and to discuss some of the implementation details.

Equation (1) is considered, in adomai < x < 1, with a Dirichlet boundary condition
and a Neumann boundary condition; i1, t) = g, u’(1, t) = h. The initial condition
is a sine wavel(x, 0) = sin(x). The residual of Eq. (3) is

9 u2(x, t)
Ry = [ w { [Qeax]—atw >—( . )}dx, (13)

whereu is thetrial solution, the set of which is denoted & andw € V is a test function.
Each test function should satisiy(—1) = 0 and be homogeneous on a Dirichlet boundary
Here the spaces are defined as

={ujlueHLu~) =g}, V={w]|weH,w=1=0.

Integrating Eq. (13) once by parts and settR@) = 0 give

u2
ew()Q.h — / ew’Qeu/dX—/ [U(X )+ ( (X, t)>} dx=0.
Q Q 2

Introducing the notation

a(w, u) = /an“’a“ X,

(14)
f(w):—/ [8 u(x, t)—i——( . t))] dx,
Q 2
the above equation may be rewritten as
a(w,u) = f(w) +eQ.w()h. (15)

Searching for solutions in finite subspaces, 8(S" ¢ S), V"(V" c V), Eq. (15) may be
rewritten as

a@", u") = ", f) +eQ.w"(Dh. (16)
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Thus, the functioru” is decomposed into a known componemt®, which satisfies the
Dirichlet boundary condition and lies in the trial space, and an unknown & which
lies in the test space and is zero on the Dirichlet boundary;ufes u"® + uH. By
reducing an infinite-dimensional problem toralimensional one, each members¥fand
VM is represented by a set nfbasis functionges, ¢o, . . ., én), ¢p(0) = 0, admitting all
linear combinations; i.ew" = C1¢1 + Coppo + - - - Cnpn. Also,u = u"® + uMH = g1 +
> p=1 dpdp, ¢n42(0) = 1. Substitutingu" for u andw" for w, Eq. (16) takes the form

n
> cpGp =0,
p=1

where

Gp =Y _a($p, ¢a)dg — (¢p. F) — €Qepp(DN + al¢p, Pns1)g-

=1

Since this is true for ang,, G is necessarily equal to 0 and the above equation may &
rewritten as

> ( > €Qedqdpdy — dpf — €Qegpp(Hh + eQeas’pqs;Hg) =0. (17)

P \g=1

Equivalently to the Fourier representation of Tadmor [}, (which will replaceQ. in
the above expression) may be approximated by a k&pebf the form

(p—P)(p—P)

Qp=¢ ®mrm,  my<p=<P. (18)

In essence, the multiplication of Fourier coefficients, in the Fourier method, is transla
into a multiplication of modal coefficients, hence an introduction of dissipation at the hig
modes. Equation (17), therefore, takes the form

Z(Z%e%@@@% —¢pf — eQppp(Dh + erQnm);@gHg) =0. (19)

P \g=1

The computational domain is subsequently divided into a number of elerkefts
each element, a set of local functions is introduced that propiderder accuracy for the
solution over théth element. In spectrddp methods, these local functions are calbedis
functionsand are invariably polynomials.

The modal expansions adopted in this work are Jacobi polynorﬁ’igatl&x) [29]. Jacobi
polynomials are the family of polynomial solutions to a singular Sturm—Louiville probler
and, for—1 < x < 1, can be written as

d d
Ix 1-x)rea+ x)”ﬂ&up(x) = Ap(L = x)*(L+ x)Pup(x),

with  up(x) = Pg*"(x), Ap=—pla+pB+p+1). Jacobi polynomials have the
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orthogonality property
1
/ 1L+ 31— %" Pg’ﬁ(x) Pg"ﬂ(x) dx = Cdpq
-1

with C depending onx, 8, p. Thus, ngﬁ(x) is orthogonal to all polynomials of order
less thanp when integrating with(1 + x)# (1 — x)* and the modal expansion basis is then
defined as

1
p6) = 7A-HA+HPHE),  0<p<P

1_
fo©) =", p=0 (20)
1+¢&

¢p(§) = 5 p=P

in the standard intervdk = {¢ | -1 < & < 1}.

Unlike the nodal basis where every basis function isNgh-order polynomial, in the
modal basis there is a hierarchy of modes starting from the linear, proceeding with
guadratic, cubic, etc. (Fig. 19).

Returning to the Burgers equation, Eq. (17) may be rewritten in matrix form as

[Alx =B
B = ¢pf + EQp‘ﬁp(l)h - prQn+l¢/p¢;1+1g

[A] = 'EQquﬁb/p(bé]
X = dg,

(21)

where[ Al = [ox € QpQqd),¢y dX.

So far only one element has been considered and thus convergence depends solely «
increase in the polynomial order. Extending the above to multiple element domains w
varying coordinate systems requires a procedure to transform the elemental maffices
X, B to their equivalent submatrices in the global multielement domain. The global elem

9o(8) = NN N

¢1($) = 0 ¢4(€) = \/

(=)

¢2($) =

¢5($) = 0

-1 -1

FIG. 19. Shape of modal expansion modes for a polynomial order of polynomial &r@eis.
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FIG. 20. Schematic of direct stiffness summation of local matrices to form the global rAatrix

Qg can be mapped to any elemental (or local) donjrvia the transformatiorke(&)
which expresses the global coordinati terms of the local coordinatg i.e.,

1- 1+
X = Xe(g)z nge—l‘l‘ 2$Xe, %‘6 Qg‘

Therefore, the global expansion basis takes the form

Dp(X) = ¢ (Xe(§)),

SR LN
p(X) = X ¢p(§)87,

(22)

Whereg = J~1, with J the Jacobian. Once all the local matrices have been transformed
global submatrices they need to be assembled, by summing contributions from the eleme
matrices. The procedure is illustrated in Fig. 20.

Matrix [ A] is banded as a result of using local basis functions, with its nonzero entri
located in theN diagonals above and below the main diagonal. Each element is placed
the matrix, as shown in Fig. 20, with the edges of each element added to the neighbo
elements. Due to the Galerkin approximation, maté} s also symmetric and positive
definite.

The main aspects of spectigi/method have been presented through the example of tt
solution of a 1-D Burgers equation. This may be summarized as:

1. Determine the number of elements and the number of modes.

2. Determine the global coordinates

3. Determine the local to global transformation matrix.

4. Calculate the elemental matrices]| x, B for each element and transform the ele-
mental matrices to global sub-matrices.

5. Assemble the global matrices.

6. Solve the system of equations]ik = B.

7. Form the solutiom(x) = S S 1 0y @i (x).
It should be mentioned that when the Dirichlet boundary conditions are used, the rc
and columns containing the corresponding Dirichlet boundary points are not incluc
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when inverting the matrix A], since they have been condensed out and are include
in B.

APPENDIX Il

Time-Stepping Scheme

For the temporal discretization of the Navier—Stokes equations we use a standard Ade
Bashforth/Crank—Nicolson algorithm (a theta scheme) with an improved pressure bounc
condition to enhance the temporal accuracy [48], as

~ Je—1

V-V
=2 fal =V IV
q=0

\%
v2pHl — v . <At> (23)
9 0
wove -y VY
At(1-6) At

El

whereV =V + AtV p™?! and V* = (V" + V1) /2. The pressure equation is supple-
mented with the boundary condition

dpm+t Je—1 Je—1
=N |- D Bl(V -V —n- [ D Bg[vV x (V x V)"
q=0 gq=0

In order to efficiently implement the SVV method, the SVV teem(Q.VV) may be
included in the Helmholtz equation; therefore, the Helmholtz equation takes the form

1 V4 v
V(Q.VV* V2V/* — V= — =0~ 24
€ (Qe )+V At(l—@) At ( )

APPENDIX I

Subfilter Model

The spectral LES formulation used is briefly reviewed in the results presented in-
current work as there is a new issue not presented elsewhere before: that of the approj
length scale in a multiresolution method as the spegbralethod. The equations of motion
for a large-eddy simulation are

a(0i) (@)  d@d) _ 9p 9 00; | o0
- = _— = —F" Ay av . Oy, 2
% 0 T x| X - X {(U v [3Xj " IXi } } (2

where the terms represents the Smagorinsky eddy-viscosity model, defineg-as2| 3,
with |§] = (25 Sj)l/2 the magnitude of the filtered strain-rate tensor. Héyds the
Smagorinsky length scaler subfilter length scalelt is equal tols = c;A, wherecs is
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the Smagorinsky constanaind A is the filter width. In structured grids typicallp =
(AxAyA,)Y3, whereAy, Ay, A, are the filter widths in each direction. For the spedual/
method on quadrilateral and triangular prisms with Fourier expansions along the streamy
(x direction), the filter widthA has to be defined properly in order to account fordhlecell
resolution Following the heuristic argument in [49], the polynomial orderand resolved
half-wave numbelk, are related by = k. A new definition ofA is thus proposed based
on the area of the trianglé,, and the grid spacing\x, in the Fourier direction, of the form

A= (A(’;)zAx> v (26)

Numerical experiments with decaying homogeneous turbulence and turbulent char
flow have justified this choice (see [40, 50]). In the near-wall region, the Panton [44] we
damping function is used which follows the correct shear stygssymptotic behavior in
the near wall. Spectral elememLES based on this choice of subfilter behaves similar tc
standard LES but because of the dual path of convergence, i.e., reducing the element si
increasing the polynomial order, more flexibility and better diagnostics of underresoluti
are available.

ACKNOWLEDGMENTS

We thank Professors Eitan Tadmor and David Gottlieb for their helpful suggestions. We also acknowledge
help of R. M. Kirby and Xu Jin for additional computations suggested by the referees. This work was suppot
by AFOSR, ONR, DOE and NSF, and computations were done on the the SGI O 2000 at NCSA (University
lllinois, Urbana-Champaign), on the IBM SP2 at MHPCC (University of New Mexico), and on the IBM SP2 ¢
CASCV (Brown University).

REFERENCES

1. J. W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbe
J. Fluid Mech.41(2), 453 (1970).

2. R. D. Moser, J. Kim, and N. N. Mansour, Direct numerical simulation of turbulent channel flows up
Re =590,Phys. Fluidsl1(4) (1999).

3. C. Meneveau, Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental
Phys. Fluidss, 815 (1994).

4. V. Borue and S. A. Orszag, Local energy flux and subgrid-scale statistics in three-dimensional turbule
J. Fluid Mech.366, 1 (1998).

5. G. E. Karniadakis and G. L. Brown, Vorticity transport in modeling three-dimensional unsteady shear flo\
Phys. Fluids7(4), 688 (1995).

6. M. Lesieur and O. Metais, New trends in large-eddy simulattomu. Rev. Fluid Mect28, 45 (1996).
7. J.Bardina, Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous Incompres:
Turbulent Flows, Ph.D. thesis (Stanford University, 1983).
8. M. V. Salvetti and S. Banerjee, A priori tests of a new dynamic subgrid-scale model for finite-differen
large-eddy simulation®hys. Fluids7, 2831 (1995).
9. K. Horiuti, A new dynamic two-parameter mixed model for large-eddy simulaitrys. Fluids9, 3443
(1997).
10. T. Dubois, F. Jauberteau, and R. Temam, Solution of the incompressible Navier-Stokes equations b
nonlinear Galerkin method, Sci. Comp8, 167 (1993).
11. T.J. R. Hughes, L. Mazzei, and K. E. Jansen, Large-eddy simulation and the variational multiscale met
Submitted for publication.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

24a.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.
35.

SPECTRAL VANISHING VISCOSITY METHOD 49

D. H. Porter, A. Pouquet, and P. R. Woodward, Kolmogorov-like spectra in decaying three-dimensic
supersonic flowsPhys. Fluidss, 2133 (1994).

J. P. Boris, F. F. Grinstein, E. S. Oran, and R. J. Kolbe, New insights into large eddy simiatidriyn.
Res.19, 19 (1992).

C. Fureby and F. F. Grinstein, Monotonically integrated large eddy simulation of free sheaAléws].
37(5), 544 (1999).

J.-L. Guermond, Subgrid stabilisation of Galerkin approximations of monotone operatnscéedings of
the European Science Foundation Conference on Applied Mathematics for Industrial Flow Problems (AM
(San Feliu de Guixols, Costa Brava, 1998)

G. Urbin and D. Knight, Large eddy simulation of the interaction of a turbulent boundary layer with a shc
wave using unstructured grids,8econd AFSOR International Conference on DNS and(BE8ers Univ.
Press, New Brunswick, NJ, 1999).

R. J. LeVequeNumerical Methods for Conservation Lav&d ed. (Birtkhuser-Verlag, Berlin, New York,
1992).

I. G. Giannakouros and G. E. Karniadakis, A spectral element-FCT method for the compressible E
equations). Comput. Physl15, 65 (1994).

E. S. Oran and J. P. Boridlumerical Simulation of Reactive Flo(Elsevier, Amsterdam/New York
1987).

P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waB¥Sn
NSF Regional Conference Series in Applied Mathematics 11, Society for Industrial and Applied Matheme
(Philadelphia, PA, 1972).

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equatic
of hydrodynamicsMat. Sb47, 271 (1959).

E. Tadmor, Convergence of spectral methods for nonlinear conservatiorslaws,J. Numer. AnaR6(1),

30 (1989).

Y. Maday and E. Tadmor, Analysis of the spectral viscosity method for periodic conservatio I/

26, 854 (1989).

E. Tadmor, Super viscosity and spectral approximations of nonlinear conservation lsws\énical Meth-
ods for Fluid Dynamics, I\edited by M. J. Baines and K. W. Morton (Clarendon Press, Oxford, 1993
p. 69.

G.-Q.Chen, Q. Dy, and E. Tadmor, Spectral viscosity approximations to multidimensional scalar conservz
laws,Math. Comp61, 629 (1993).

H.-P. Ma, Chebyschev-Legendre spectral viscosity method for nonlinear conservati@ifdws, Numer.
Anal.35(3), 901 (1998).

H.-P. Ma, Chebyschev-Legendre super spectral viscosity method for nonlinear conservati@iAalvs,
J. Numer. Anal35(3), 903 (1998).

¢#. Andreassen, |. Lie, and C. E. Wasberg, The spectral viscosity method applied to simulation of waves
stratified atmospherd, Comput. Physl10 257 (1994).

S. M. O. Kaber, A Legendre pseudospectral viscosity methd@ipmput. Physl28 165 (1996).

G. E. Karniadakis and S. J. Sherw@pectral/hp Element Methods for CRDxford Univ. Press, London,
1999).

W. S. Don, Numerical study of pseudospectral methods in shock wave applicatiGosnput. Physl10,

103 (1994).

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton—-Jacobi equafisass. Am. Math. Soc.
61, 629 (1983).

Y. Maday, S. M. Ould Kaber, and E. Tadmor, Legendre pseudospectral viscosity method for nonlir
conservation lawsSIAM J. Numer. AnaB0, 321 (1993).

E. Tadmor, Total variation and error estimates for spectral viscosity approxima#iatis, Comp60, 245
(1993).

M. Lesieur and O. Metais, New trends in large-eddy simulafiom, Rev. Fluid Mect28, 45 (1996).

R. H. Kraichnan, Eddy viscosity in two and three dimensidn&tmos. Sci33, 1521 (1976).



50

36

37

38.
39.
40.

41.

42.

43.

44,
45.

46.

47.

48.

49.

50.

KARAMANOS AND KARNIADAKIS

. J. P. Chollet, Two-point closures as a subgrid scale modelling for large eddy simulatitunduitent Shear
Flows IV, editd by F. Durst and B. Launder (Springer—Verlag, Berlin/New York, 1984).

. L. Emmel, Methode spectrale multidomaine de viscosite evanescente pour des problems hyperbolique
lineaires, Ph.D. thesis (University of Paris 6, France, 1998).

D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resol8fidh| RevievB9, 644 (1998).

A. Gelb and E. Tadmor, Detection of edges in spectral dgipl. Comput. Harmonic Ana¥, 101 (1999).
G.-S. Karamanos, Large-Eddy Simulation Using Unstructured Spectral/hp Elements, Ph.D. thesis (Imp
College, Department of Aeronautics, 1999).

J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds numtk
J. Fluid Mech.117, 133 (1987).

U. Piomelli, Models for Large Eddy Simulations of Turbulent Flow including Transpiration, Ph.D. thes
(Stanford University, 1987).

M. Wille, Large Eddy Simulation of Jets in Cross Flows, Ph.D. thesis (Imperial College, Department
Chemical Engineering, 1997).

R. L. Panton, A Reynolds stress function for wall layérs$;luids Eng119, 325 (1997).

H. P. Kreplin and H. Eckelmann, Behaviour of the three fluctuating velocity components in the wall regi
of a turbulent channel flowRhy. Fluids22(7), 1233 (1979).

R. Temam, Approximation of attractors, large eddy simulations and multiscale meRnocisR. Soc. Lond.
434,23 (1991).

C. K. W. Tam, J. C. Webb, and Z. Dong, A study of the short wave components in computational accous!
J. Comput. Acoustics, 1 (1993).

G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for incompressible Navie
Stokes equations, Comput. Phy97, 414 (1991).

D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: Theory and applicatiiAdylin
CMBS(Soc. for Industr. & Appl. Math., Philadelphia, 1977).

G.-S. Karamanos, S. J. Sherwin, and J. F. Morrison, Large-eddy simulation using unstructuredrgpectr:
elements, inRecent Advances in DNS and LESlited by D. Knight & L. Sakell (Kluwer Academic,
Dordrecht/Norwell, MA, 1999).



	1. INTRODUCTION
	FIG. 1.

	2. THE SPECTRAL VANISHING VISCOSITY METHOD
	FIG. 2.

	3. EXPERIMENTS WITH 1-D BURGERS’ EQUATION
	FIG. 3.
	FIG. 4.
	FIG. 5.

	4. CONVERGENCE FOR 2-D NAVIER–STOKES EQUATIONS
	FIG. 6.
	FIG. 7.
	TABLE I

	5. SVV SIMULATIONS OF TURBULENT CHANNEL FLOWS
	TABLE II
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.

	6. SUMMARY AND DISCUSSION
	FIG. 18.

	APPENDIX I
	FIG. 19.
	FIG. 20.

	APPENDIX II
	APPENDIX III
	ACKNOWLEDGMENTS
	REFERENCES

